This case and discussion is written by Sam Ghali (@EM_RESUS), with a few edits by Smith
Case
A
75-year-old man collapses to the ground in cardiac arrest while
shopping with his wife. Medically trained bystanders happen to witness
the event and begin CPR right away. Paramedics rush to the scene and
find the man to be in V-Fib. He is intubated and shocked 3 times prior
to arrival in the ED. He comes in with CPR in progress via LUCAS device
and is now in slow PEA. An intra-arrest arterial line is placed. After 3
more rounds of chest compressions there is a sudden spike in ETCO2 and
the A-line shows a BP of 70/40 mmHg. Bedside Echo reveals what appears
to be stunned myocardium with poor systolic function. Vasopressor
infusions are started.
Here is his STAT 12-Lead ECG:
What do you think?
|
There
are wide complexes with a regular rate at around 65 bpm. With complexes
this wide one should think of toxicologic or metabolic causes of
arrest. In particular one should consider profound hyperkalemia. But
take a close look at the unique morphology of these particular
complexes: notice how they look remarkably like Shark Fins. They are not
QRS complexes but rather a combination of QRS and T-wave. What they
represent is massive ST-Deviation! This is a junctional rhythm with
massive ST-Elevation in leads II, III, and aVF, with massive reciprocal
ST-depression in leads I & aVL. There is also ST-Depression in the
precordial leads maximal in V2-V4 consistent with Posterior involvement.
What you are looking at is a Massive Infero-Posterior STEMI!
The
key to seeing and understanding how these complexes represent profound
ST-Deviation lies in delineating the end of the QRS . The problem is
that with this unique morphology, the QRS complex and T-wave merge
together as a result of extreme ST-Deviation,
and the two become indistinguishable. But remember this: If you can
find the end of the QRS in one lead, you can find the end of the QRS in
any lead. Look in all 12 leads and find one which clearly shows the end
of the QRS. Here lead V5 happens to show the beginning and end of the
QRS very nicely. Now all you have to do is simply draw a line straight
up from this point (J-point) in V5, and you can find the same point in
any lead.
Here is the same 12-Lead ECG with vertical lines drawn at the J-points:
The profound ST-Deviations
suddenly become glaringly obvious and you can now easily appreciate the
classic pattern of Massive Infero-Posterior STEMI!
|
Case Continued:
The
patient was given Aspirin and loaded with Ticagrelor via OG tube and
the Cath Lab was immediately activated. Unfortunately, this was met with
significant resistance. The Cardiology team was not familiar with this
ECG phenomenon and there was an ongoing concern for hyperkalemia.
Point-of-care laboratory testing was performed and revealed a normal K+.
Despite the normal lab result there was persistent concern for
hyperkalemia. (It is worth noting that it is not uncommon for labs to
show falsely elevated K+ due to specimen hemolysis, but a falsely normal
K+ is exceedingly rare!)
With
hyperkalemia an ongoing focus, there was continued delay in
catheterization. The patient was given multiple doses of calcium,
insulin, glucose, and multiple ampules of sodium bicarbonate without any
response or improvement of shock. He subsequently became bradycardic
and a decision was made to pursue transvenous pacemaker insertion. In
the process, the patient arrested once again and required an additional
round of CPR to regain a perfusing circulation.
Given
persistent shock the decision was eventually made to proceed with
coronary angiography, which revealed a 100% thrombotic RCA occlusion.
During attempts to open and stent this culprit lesion the patient
arrested yet again. Unfortunately this time he was unable to be
resuscitated.
Shark Fin in the Literature:
The
literature on this distinct ECG phenomenon is scant, consisting
essentially of case reports--blog, book, and journal[1-11]. Therefore,
its incidence is unknown. Presumably many cases go unrecognized and are
mistaken for conduction abnormalities, metabolic derangements, or
toxicologic insult. From the cases that have been described, Shark Fin
appears to be an ominous sign with a strikingly poor prognosis.
Here is an ECG with Shark Fin Sign from a prior post:
Here is another great Shark Fin ECG case from Steve Smith's ECG Book[6]:
originally published in K. Wang's Fantastic ECG Book[7]
This is an actual rhythm strip of Lead V4 from this case:
What would you think if you saw this on the monitor before obtaining a 12-lead??You can see how easily Shark Fin ST-Elevation could be mistaken for a Wide-Complex Tachycardia! |
Terminology:
A
term that has been used in the literature to describe Shark Fin
morphology is "Giant R-waves"[8-11]. This designation is suboptimal for a
few reasons. Firstly, Shark Fin morphology represents extreme ST-Deviation which
encapsulates both ST-Elevation as well as ST-Depression. ECG
territories with Shark Fin reciprocal depression will not have R-waves,
but rather S-waves.
More
importantly, the term "Giant R-wave" is problematic because it has also
been used in the literature to refer to R-waves that are only mildly
prominent and come nothing close in size or morphology to the ECG
phenomenon described in this post!
This ECG is from a case report[12] referring to the R-wave in Lead V2 as a "giant R wave":
Conclusions:
Shark
Fin is an electrocardiographic sign of acute coronary occlusion. It is a
unique ECG phenomenon consisting of complexes formed by the blurring
together of QRS and T-wave as a result of extreme ST-Deviation. These
complexes manifest in contiguous ECG leads corresponding with coronary
anatomy, and represent transmural ischemia. Shark Fin Sign should be
recognized based on its characteristic morphology, and confirmed by
delineating the J-point using the technique described above. While there
is a paucity of literature on the topic, the presence of this sign
appears to be associated with a significant mortality, underscoring the
critical importance of prompt recognition and emergency reperfusion.
==================================
Comment by KEN GRAUER, MD (6/11/2018):
==================================
Superb explanation by Drs. Sam Ghali and Steve Smith of this highly insightful case with tragic outcome. I’ll add Figure-1 below, in which I follow the same technique that Dr Ghali used to delineate the end of the QRS complex. Although precise determination of QRS onset is challenging due to a seemingly short isoelectric segment seen in several leads — I believe the vertical RED lines capture the beginning of the QRS.
- This suggests that there is some QRS widening, although clearly far less than initially thought because of the shark fin phenomenon.
- I believe there is underlying bifascicular block — which goes in concert with extensive ongoing acute infarction. While lacking amplitude, the QRS complex in lead V1, appears to be a triphasic, and associated with wide terminal S waves in all lateral leads. One could debate whether terminology is best served by calling this IVCD vs RBBB — but given the rS pattern in lead I (with steep decline and predominant negativity from the S wave in this lead) + predominant R waves in each of the inferior leads — I submit that the most logical explanation is combined RBBB/LPHB.
Our thanks again to Dr. Ghali for presenting this case!
Figure-1: Vertical RED line shows where I believe the QRS begins. BLACK lines drawn by Dr. Ghali show the end of the QRS complex in all leads. |
References:
1. Francis,
R. Smith, SW. "Shark Fin" ECG in I, aVL, V4, and V5. Which artery?
Hint: patient is in shock and was put on ECMO. March 26, 2016. http://hqmeded-ecg.blogs pot.com/2016/03/shark-fin-ecg- in-i-avl-v4-and-v5-which.html
2.
Larose D, Vadeboncoeur A, Smith, SW. VFIb Arrest, Put on ECMO, regains
an organized rhythm, and a 12-lead is recorded. May 22, 2017. http://hqmeded-ecg.blogs pot.com/2017/05/refractory-v-f ib-arrest-put-on-ecmo.html
3. Smith, SW. Cardiac Arrest -- Is it STEMI? April 25, 2018. http://hqmeded-ecg.blogs pot.com/2018/04/cardiac-arrest -is-it-stemi.html
4. Walsh, B, Smith, SW. Giant R-waves. What are they? July 3, 2015. http://hqmeded-ecg.blogs pot.com/2015/07/giant-r-waves- what-are-they.html
5. Smith, SW. Wide Complex Tachycardia. It's really sinus, RBBB + LAFB, and massive ST elevation. Nov 16, 2010. http://hqmeded-ecg.blogs pot.com/2010/11/wide-complex-t achycardia-its-really.html?m=1
6.
Smith, SW et al. The ECG in Acute MI: An Evidence-based Manual of
Reperfusion Therapy. Lippincott Williams & Wilkins. 2002.
7. Wang, K. et al. Atlas of Electrocardigraphy. Jaypee Brothers Medical Publishers. 2013
8. Faillace RT et al. The giant R wave of acute myocardial infarction. Jpn Heart J. 1985. Mar;26(2):165-78.
9.
Madias JE. The "giant R waves" ECG pattern of hyperacute phase of
myocardial infarction: A case report. J Electrocardiol.
1993;26(1):77-82.
10.
Madias JE et al. Transient giant R waves in the early phase of acute
myocardial infarction: Association with ventricular fibrillation. Clin
Cariol. 1981.
11.
Testa-Fernandez A et al. "Giant R wave" electrocardiogram pattern
during exercise treadmill testing: A case report. J Med Case Rep. 2011
Jul 11;5:304.
12. Chugh, Y et al. Transient Giant R Wave as a Marker for Ischemia in Unstable Angina. Cureus. 2017 Apr; 9(4):e1200
The fact that some of the precordial leads have part of the upper portion of the QRS complex narrow an indicator that this is not Hyperkalemia?
ReplyDeleteExcellent post, sorry about the delay and the outcome. Hopefully we can prevent this in the future by excellent posts like this. Thanks for sending!
ReplyDeleteI'm wondering more about the reasons for delay in cath. Post-arrest ROSC, why not? Delaying cath after a normal K+? In a guy not known to be on dialysis? Sounds like **active wishing** for hyper K+. I've heard that some interventionalists reluctant to take these extremely sick post-ROSC patients to cath because of the way some retrospective reviewers hold any death in the cath lab against them for purposes of quality measures. But that's just a rumor I've heard.
ReplyDeleteits very disconcerting when our cardiology colleagues are resistant.
ReplyDeleteexcellent case, and analyses. terrible outcome.
article about the same topic in this french blog => https://ecgandco.wordpress.com/2017/10/05/des-ailerons-de-requin/
ReplyDeleteGreat review! Looking into the literature on this, I found two recent references from Cipriani et al and Ruiz-Pazarro et al. They describe this finding as Triangular Waveform or Graveyard sign. Cipriani reported this finding retrospectively in 5/367 (1.4%) of STEMI.
ReplyDeleteThe authors reported a very high right of LMCA occlusion cardiogenic shock and death with this finidng.
Cipriani et al. The electrocardiographic “triangular QRS-ST-T waveform” pattern in patients with ST-segment elevation myocardial infarction: Incidence, pathophysiology and clinical implications. Journal of Electrocardiology 51 (2018) 8 – 14
Ruiz-Pazarro et al, Graveyard Electrocardiogram. The Journal of Emergency Medicine
Volume 52, Issue 2, February 2017, Pages e49-e50 http://dx.doi.org/10.1016/j.jemermed.2016.08.015
Cipriani et al. The electrocardiographic “triangular QRS-ST-T waveform” pattern in patients with ST-segment elevation myocardial infarction: Incidence, pathophysiology and clinical implications. Journal of Electrocardiology 51 (2018) 8 – 14
Thank you, Daniel!!
DeleteMuy bueno excelente
ReplyDeleteGracias! Estamos felices que te haya gustado! — :)
DeleteGrazie post eccellente
ReplyDeleteGrazie DocNadia. Sono felice che questo post ti sia piaciuto! (Thanks DocNadia — I'm happy you liked this post! — :)
Delete